Using a quadratic nth term

Name:

maths-school.co.uk

,	1 st Term	following quadratic n th te	5 th Term	10 th Term
a) n ² + 3	4	12	28	103
b) 2n²	2	18	50	200
	4	18	40	130
d) n² – 2n	-1	3		80
e) n ² + 5n – 5	1	19	45	145
f) n ² – 3n + 1	-1	1	11	71
g) 2n ² + 3n – 7	-2			223
g) 3n ² - n + 2	4	26	72	292

Find if the following numbers are in the given sequences, and if so, which position in the sequence?

h) Is 117 in n² - 4n?

Yes, n = 13

i) Is $132 \text{ in } n^2 + n$?

Yes, n = 11

j) Is $116 \text{ in } n^2 - 2n + 4$?

No, n = 11.630

k) Is 74 in $n^2 - n$?

No, n = 9.117

I) Is $134 \text{ in } 2n^2 - 4n + 8$?

Yes, n = 9

Exam question:

The nth term of a sequence is: $2n^2 + 4n - 1$ Work out the 10th term of the sequence

$$2(10)^2 + 4(10) - 1 = 239$$

