Finding and using the $n^{\text {th }}$ term of a linear sequence
Name:
MATHS-SCHOOL

maths-school.co.uk
Find the $\mathrm{n}^{\text {th }}$ term of the sequences:

a) $4,6,8,10,12 \ldots$	$2 n+2$	g) $7,13,19,25,31$...	$6 n+1$
b) $3,7,11,15,19 \ldots$	$4 n-1$	h) $-4,4,12,20,28$...	$8 n-12$
c) $9,14,19,24,29 . .$.	$5 n+4$	i) $-9,-4,1,6,11 \ldots$	$5 n-14$
d) $0,5,10,15,20 \ldots$	5n-5	j) $19,16,13,10,7 \ldots$	$-3 n+22$
e) $1,9,17,25,33 \ldots$	$8 n-7$	k) $2,-3,-8,-13,-18 \ldots$	$-5 n+7$
f) $-3,-1,1,3,5 \ldots$	$2 n-5$	k) $8,3,-2,-7,-12 \ldots$	$-5 n+13$

Find the $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}$ and $100^{\text {th }}$ terms of the following $\mathrm{n}^{\text {th }}$ term sequences:

	${ }_{1}{ }^{\text {st Term }}$	$3{ }^{\text {rd }}$ Term	$5^{\text {th }}$ Term	$100^{\text {tht }}$ Term
	9	11	13	108
m) $3 n$	3	9	15	300
n) $2 \mathrm{n}+4$	6	10	14	204
o) $3 n-1$	2	8	14	299
p) $-4 \mathrm{n}+10$	6	-2	-10	-390
q) $-5 n-5$	-10	-20	-30	-505
r) $8-4 n$	4	-4	-12	-392

Fully explain your answer for the following questions
s) Is 95 a term in the sequence $2,5,8,11 \ldots$?
t) Is 117 a term in the sequence $5,11,17,23 \ldots$?
u) Is 250 a term in the sequence $40,55,70,85 \ldots$?
v) Is 228 a term in the sequence $6,14,22,30 \ldots$?

Yes, $\mathrm{n}=32$

No, $n=19.667$

$$
\text { Yes, } n=15
$$

No, $\mathrm{n}=28.75$

Exam question:

Here are the first five terms of a number sequence. $8,11,14,17,20$
a) Write an expression, in terms of n, for the nth term of this number sequence.

$$
3 n+5
$$

b) Determine if 245 is in this sequence and if so, which position it appears.

$$
\text { Yes, } n=80
$$

